3.168 \(\int \frac{d+e x^2}{\sqrt{-a-c x^4}} \, dx\)

Optimal. Leaf size=236 \[ \frac{\sqrt [4]{a} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} \left (\frac{\sqrt{c} d}{\sqrt{a}}+e\right ) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac{1}{2}\right )}{2 c^{3/4} \sqrt{-a-c x^4}}-\frac{\sqrt [4]{a} e \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{c^{3/4} \sqrt{-a-c x^4}}-\frac{e x \sqrt{-a-c x^4}}{\sqrt{c} \left (\sqrt{a}+\sqrt{c} x^2\right )} \]

[Out]

-((e*x*Sqrt[-a - c*x^4])/(Sqrt[c]*(Sqrt[a] + Sqrt[c]*x^2))) - (a^(1/4)*e*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x
^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(c^(3/4)*Sqrt[-a - c*x^4]) + (a^
(1/4)*((Sqrt[c]*d)/Sqrt[a] + e)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[
2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(2*c^(3/4)*Sqrt[-a - c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0692306, antiderivative size = 236, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.136, Rules used = {1198, 220, 1196} \[ \frac{\sqrt [4]{a} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} \left (\frac{\sqrt{c} d}{\sqrt{a}}+e\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 c^{3/4} \sqrt{-a-c x^4}}-\frac{\sqrt [4]{a} e \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{c^{3/4} \sqrt{-a-c x^4}}-\frac{e x \sqrt{-a-c x^4}}{\sqrt{c} \left (\sqrt{a}+\sqrt{c} x^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)/Sqrt[-a - c*x^4],x]

[Out]

-((e*x*Sqrt[-a - c*x^4])/(Sqrt[c]*(Sqrt[a] + Sqrt[c]*x^2))) - (a^(1/4)*e*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x
^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(c^(3/4)*Sqrt[-a - c*x^4]) + (a^
(1/4)*((Sqrt[c]*d)/Sqrt[a] + e)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[
2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(2*c^(3/4)*Sqrt[-a - c*x^4])

Rule 1198

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{d+e x^2}{\sqrt{-a-c x^4}} \, dx &=-\frac{\left (\sqrt{a} e\right ) \int \frac{1-\frac{\sqrt{c} x^2}{\sqrt{a}}}{\sqrt{-a-c x^4}} \, dx}{\sqrt{c}}+\left (d+\frac{\sqrt{a} e}{\sqrt{c}}\right ) \int \frac{1}{\sqrt{-a-c x^4}} \, dx\\ &=-\frac{e x \sqrt{-a-c x^4}}{\sqrt{c} \left (\sqrt{a}+\sqrt{c} x^2\right )}-\frac{\sqrt [4]{a} e \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{c^{3/4} \sqrt{-a-c x^4}}+\frac{\left (\sqrt{c} d+\sqrt{a} e\right ) \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 \sqrt [4]{a} c^{3/4} \sqrt{-a-c x^4}}\\ \end{align*}

Mathematica [C]  time = 0.037163, size = 80, normalized size = 0.34 \[ \frac{\sqrt{\frac{c x^4}{a}+1} \left (3 d x \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-\frac{c x^4}{a}\right )+e x^3 \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{7}{4};-\frac{c x^4}{a}\right )\right )}{3 \sqrt{-a-c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)/Sqrt[-a - c*x^4],x]

[Out]

(Sqrt[1 + (c*x^4)/a]*(3*d*x*Hypergeometric2F1[1/4, 1/2, 5/4, -((c*x^4)/a)] + e*x^3*Hypergeometric2F1[1/2, 3/4,
 7/4, -((c*x^4)/a)]))/(3*Sqrt[-a - c*x^4])

________________________________________________________________________________________

Maple [C]  time = 0.175, size = 175, normalized size = 0.7 \begin{align*}{-ie\sqrt{a}\sqrt{1+{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}\sqrt{1-{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}} \left ({\it EllipticF} \left ( x\sqrt{{-i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ) -{\it EllipticE} \left ( x\sqrt{{-i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ) \right ){\frac{1}{\sqrt{{-i\sqrt{c}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{-c{x}^{4}-a}}}{\frac{1}{\sqrt{c}}}}+{d\sqrt{1+{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}\sqrt{1-{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{-i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{-i\sqrt{c}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{-c{x}^{4}-a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)/(-c*x^4-a)^(1/2),x)

[Out]

-I*e*a^(1/2)/(-I/a^(1/2)*c^(1/2))^(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(-c*x^
4-a)^(1/2)/c^(1/2)*(EllipticF(x*(-I/a^(1/2)*c^(1/2))^(1/2),I)-EllipticE(x*(-I/a^(1/2)*c^(1/2))^(1/2),I))+d/(-I
/a^(1/2)*c^(1/2))^(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(-c*x^4-a)^(1/2)*Ellip
ticF(x*(-I/a^(1/2)*c^(1/2))^(1/2),I)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e x^{2} + d}{\sqrt{-c x^{4} - a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(-c*x^4-a)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x^2 + d)/sqrt(-c*x^4 - a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-c x^{4} - a}{\left (e x^{2} + d\right )}}{c x^{4} + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(-c*x^4-a)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c*x^4 - a)*(e*x^2 + d)/(c*x^4 + a), x)

________________________________________________________________________________________

Sympy [C]  time = 1.63576, size = 83, normalized size = 0.35 \begin{align*} - \frac{i d x \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{1}{2} \\ \frac{5}{4} \end{matrix}\middle |{\frac{c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt{a} \Gamma \left (\frac{5}{4}\right )} - \frac{i e x^{3} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle |{\frac{c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt{a} \Gamma \left (\frac{7}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)/(-c*x**4-a)**(1/2),x)

[Out]

-I*d*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(5/4)) - I*e*x**3*gamma(
3/4)*hyper((1/2, 3/4), (7/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(7/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e x^{2} + d}{\sqrt{-c x^{4} - a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(-c*x^4-a)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x^2 + d)/sqrt(-c*x^4 - a), x)